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INTRODUCTION

The importance of the determination of residual stresses in a prestressed

thick-walled cylinder is well-known, and elastic-plastic loading response has

been extensively studied (refs 1-5). Most of the earlier solutions for

residual stresses were based on the assumption of elastic unloading and only a

few considered elastic-plastic unloading (refs 2,5). Bland's work (ref 2),

which neglects the Bauschinger effect, is based on the Tresca's yield

criterion and the isotropic hardening rule. Kinematic hardening is the

simplest theory that can model the Bauschinger effect (refs 6,7). If

unloading does not occur, there is no difference between the kinematic and

isotropic hardening models. For unloading with reverse yielding, the results

based on these two models will be different as shown in a recent paper (ref 5)

using the ADINA finite element code (ref 8). The von Mises' yield criterion

and its associated flow rules were used in both models.

This report states a closed-form solution for elastic-plastic loading and

unloading in pressurized thick-walled cylinders using Tresca's yield

criterion, its associated flow rule, and the linear kinematic hardening law.

Numerical results are presented for a closed-end tube.

ELASTIC-PLASTIC LOADING

Consider a thick-walled cylinder, internal radius a and external radius

b, which is subjected to internal pressure p. The material is assumed to be

elastic-plastic, obeying the Tresca's yield criterion, the associated flow

theory, and a linear strain-hardening rule. Using the isotropic hardening

References are listed at the end of this report.



r theory, the elastic-plastic solution has been obtained by Bland (ref 2). In

order to consider the Bauschinger effect, the kinematic hardening theory is

used here. Subject to the condition C8 e az > or, Tresca's yield criterion

for the Prager-hardening rule (ref 6) states that yielding occurs when

- (Or-r) -K (1)

where

ae - cee , % =  r (2)

define the position of the center of the yield surface; c is a material

constant and Ko the initial yield stress. The associated flow rule states

that
p p p

dEe -der and dc, - 0 (3)

For the case of linear strain-hardening, the yield stress curve can be

represented by a straight line,

P
K/Ko - I + nc and n = (E/Ko)m/(l-m) (4)

pwhere n is a material constant and the equivalent plastic strain c is defined

by

e ' 7 f {(de6P)2 + (drp) 2} - 2 p
= - Ce (5)V7

The elastic-plastic solution for the stresses and displacements can be

obtained explicitly. The expressions in the plastic range (a 4 r 4 p) are

Or/Ko 1 p2  1 p2  p (6)
o0/Ko ~~r = + ) e -) z no)log -

o0/K0  2 2 r (7)
P

Oz/Ko m vp2/b2 - 2v(1-n$) log - + ECz/K o  (8)
r

(E/Ko)(u/r) = (l-2v)(l+v)(Or/Ko) - VECz/K o + (1-v 2)p 2 /r 2  (9)

2
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and in the elastic range (p 4 r 4 b)

Or/Ko 1 p2  p2  (10)

oz/Ko E ez/KJ + vp 2 /b 2  (12)

1

(E/Ko)u/r = - (l+v)[p 2 /r 2 + (1-2v)p 2 /b 2 ] - VE~z/Ko (13)
2

where
(i i-2 v)

Eez/K0 - - - - - - - (p/K0) (14)
(b 2 /a 2-l)

p 0 (open-end) , I (closed-end)

and

- 1 + - (E/K)/(-v 2) (15)

2

The yield surface moves in translation during plastic deformation as given by
( 2cp P

, - - ( /2)c and e p .(p 2/r 2-1) (16)

The elastic plastic surface p is related to the internal pressure p by
i 1

p/K o  - (1-p 2 /b 2 ) + (1-n0)log p/a + - (p 2 /a 2-1) (17)
2 2

REVERSE YIELDING

If the pressure p given by Eq. (17) is subsequently removed completely

with no reverse yielding, the unloading is entirely elastic and the solution

is given by

ar  p b2  (18)

2/ ------t -- - 11
b 1 r 2  (19)

oz' V(Or'+OO') + Eez' (20)

Ee z '  -( p-2v)p/(b 2/a 2-1) (21)

Eu'/r - -((l-v- vv) + (l+v)b 2 /r 2Jp/(b 2 /a2-1) (22)

3
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The residual stress system, which will be denoted by two primes, is the sum of

the system produced by loading and that produced by unloading, i.e., Or" - Or

+ Or', etc. Assuming the kinematic hardening rule and using Tresca's

criterion subject to Or" > az > os", the reverse yielding will not occur if

(Or"-%) - (oe"-ae) 4 Ko (23)

Substituting the loading and unloading solution into Eq. (23), we can

determine the minimum pressure (P.) for reverse yielding to occur. The

equation for pm is given by

Pm/Ko - (1-a2/b2) (24)

Equating Eqs. (17) to (24), we can determine the maximum amount of overstrain

for reverse yielding not to occur.

ELASTIC-PLASTIC UNLOADING

Now suppose that the loading has been such that the internal pressure is

larger than pm given by Eq. (24). On unloading, yielding will occur for a 4 r

( p' with p' < p. Using the kinematic hardening rule during unloading and

assuming Or" > oz" > os", we have

(Or"-ar") - (oe"-ae") - Ko (25)

where

tr" = CEr , ae" - ce0" p  (26)

Since the residual stress system is the sum of two systems produced by loading

and unloading, combining Eqs. (1) and (25) leads to

(Or'-a') - (oe'-ae') - 2Ko (27)

where

artI p pc ce ' r cL 1 ,  ( 2 8 )
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During elastic-plastic unloading, the associated flow theory states that

p p p
dc d . cr 0 and dcz' 0 (29)

p
It has been assumed that the sign of d 0 '

p is the same throughout the

unloading process and that is negative. This will be the case when the

internal pressure is removed during unloading. Since ez E = - z is

known, we can use Hooke's law and the equilibrium equation,

dOr'/dr = (oO'-or')/r (30)

to express oz' in terms of or'

z = Ec z ' + 2Var' + vr(dor'/dr) (31)

Since the dilation is purely elastic

(du'/dr) + u'/r + z= E-1(l-2v)(or'+O'+oz') (32)

On integration using Eqs. (30) and (31), we obtain

ru' = (l-2v)(l+V)E-Ir 2 or' - Vez'r 2 + A (33)

where A is a constant. The strain components can be expressed in terms of or'

and (dor'/dr). The plastic strain components are

P p Ar - 2 - -v2)E'r(dOr'/dr) (34)Ce w  C - r Arffi2 E

Using Eq. (31) together with Eqs. (27) and (28), we have

r(dor'/dr) - -2 (Ko-cCe' ) (35)

Substituting Eq. (35) into Eq. (34) and determining the constant A by the

condition E0 'P = 0 at p', we obtain

A = -2(I-v 2 )(Ko/E)p' 2  (36)

and

(E/Ko)ce' = -2(p' 2 /r 2-l)/[2c/E + (l-2) - 1 ] (37)

Equations (35) and (36) with the boundary condition at r = a suffice to

determine or' in the plastic region. The expressions for the stresses in (a

5
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r 4 p') are given explicitly by

Or'/Ko p/1% 8('/ 2 '/ 2 - 2(1-nB)log(r/a) (8

0 '/Ko - Or'/Ko - 2 - 2nB(p'/ 2 1)(9

az'/Ko =V(cr'+00')/Ko -Eez/Ko (40)

and in (p' (r b) given by

Or' 1K0  (P2r T ±/2 (41)

oa '/K0  (42)

GZl/Ko -2vpt 2/b 2 - Eez/Ko (43)

The continuity condition of or' determines the relation between p' and p as

given by

1 - p' 2 /b2 + 2(l-ri8) log -_ + qf~(p' 2 /a 2 -l)
a

11
=- (1-p 2/b2 ) + (l-na)log( p/a) + - na(p 2/a 2-l) (44)

2 2

The yield surface moves in translation during elastic-plastic unloading

according to

ez6 - ' c (45)

p
where Eel is given by Eq. (37).

* NUMERICAL RESULTS AND DISCUSSIONS

Consider a closed-end thick-walled cylinder with the following

parameters: b/a - 3, v = 0.3, and ElK0 - 200. The numerical results for the

displacements, strains, and stresses during elastic-plastic loading and

* unloading have been calculated. Figure 1 shows the relationship between the

internal pressure factor (p/K0 ) and the dimensionless elastic-plastic

interface (p/a) for various values of the hardening parameter, m 0, 0.05,

6



0.1, and 0.2. The displacements at the inside and outside boundaries of the

tube (Ua and Ub) are shown in Figure 2 as functions of the elastic-plastic

interface for m = 0.1. The solid and dotted curves represent the displace-

ments during loading and after unloading, respectively. Figure 3 shows the

distribution of hoop stresses (os) during loading for p/a - 1.0, 1.5, 2.0,

2.5, and 3.0. After complete unloading from different stages of loading, the

corresponding residual hoop stresses (ae") are shown in Figure 4. Reverse

yielding occurs in a strain-hardening tube with m = 0.1 only when the plastic

portion (p) is larger than 1.652 a. In order to show the effect of hardening

parameters (m) on the residual stress distribution, the numerical results are

presented in Figure 5 for m = 0, 0.05, and 0.10. As can be seen in the

figure, larger values of hardening parameter (m) tend to reduce the beneficial

residual hoop stress at the bore.

All the results presented in Figures 1 through 5 are based on the

kinematic theory. We have also calculated the results based on the isotropic

hardening theory (ref 2). Figure 6 shows a comparison of two hardening rules

for the residual hoop stresses in a closed-end thick-walled cylinder. The

dotted curves represent the isotropic hardening model with no Bauschinger

effect. According to this model, there is no reverse yielding. The solid

curves show the Bauschinger effect, and reverse yielding occurs in both cases,

P'/a = 1.098, 1.336, for p/a = 2.0, 3.0, respectively. The residual hoop

stresses at the bore are ae"/Ko = -0.729, -0.327 for p/a = 2.0, 3.0,

respectively. According to the isotropic hardening rule, those values of

ae"/K o should be -1.060, -1.318 for p/a - 2.0, 3.0, respectively. These

numerical results Indicate that the effect of hardening rules on the residual

7



hoop stresses is quite significant, especially near the bore. Many plasticity

theories for reverse yielding have been proposed and reviewed (ref 9), and

many computer programs have been developed (ref 10). It is believed that the

numerical results based on other theories will fall within the limits obtained

by using the kinematic and isotropic hardening models.
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Figure 1. Effect of hardening on the relation between internal pressure
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Figure 3. Distribution of hoop stresses during loading.
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Figure 4. Distribution of residual hoop stresses.
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Figure 5. Effect of hardening parameter on residual stress distribution.
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